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Abstract

An e.cient and accurate numerical method of interconversion between linear viscoelastic material func!
tions based on a Prony series representation is presented and tested using experimental data from selected
polymeric materials[ The method is straightforward and applicable to interconversion between modulus and
compliance functions in time\ frequency\ and Laplace transform domains[ Good agreement is shown between
solutions obtained from the method in di}erent domains[ A detailed computational procedure and selection
of values for parameters involved in the method are presented and illustrated[ In particular\ the e}ects of
di}erent choices of relaxation and retardation times on the accuracy of the method are discussed[ The
mathematical e.ciency associated with Prony series representations of both source and target transient
material functions is fully utilized[ The method is general enough to cover both viscoelastic solids and
liquids[ The tensile relaxation data from polymethyl methacrylate "PMMA# and the shear storage compliance
data from polyisobutylene are used in illustrating the method[ In a companion paper "Schapery and Park\
0887#\ an extended approximate analytical interconversion method is presented[ Þ 0887 Elsevier Science
Ltd[ All rights reserved[
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0[ Introduction

The need for interconversion between linear viscoelastic material functions has been growing
with the increased use of polymers and polymer!based composites[ It is well!known that all linear
viscoelastic material functions are mathematically equivalent for each mode of loading such as
uniaxial or shear[ The interrelationships between linear viscoelastic material functions have a basis
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in the theory of linear di}erential and integral equations\ and thus are represented in standard
mathematical forms[ Based on these interrelationships\ a given "or source# material function can
be converted into other "or target# material functions as long as the given function is known over
a wide!enough range of time or frequency[

Interconversion may be required for di}erent reasons[ The response of a material under a certain
excitation condition inaccessible to direct experiment may be predicted from measurements under
other readily realizable conditions[ For instance\ the response of a very sti} material subjected to
a speci_ed deformation is usually di.cult to obtain from a constant!strain\ relaxation test because
of the requirement of a robust testing device[ However\ the required response may be obtained
from an easily!realizable\ constant!stress\ creep test and through an interconversion between the
relaxation modulus and creep compliance[ For other reasons\ a material function often cannot be
determined over the complete range of its domain from a single excitation ^ in these cases\ the
range can be extended by combining the responses to di}erent types of excitation[ For instance\
an accurate short!time response which is di.cult to obtain from a test with transient excitation
can easily be obtained from a test with steady!state sinusoidal excitation[ This normally requires
an interconversion between responses in time and frequency domains[

The mathematical interrelationships between linear viscoelastic material functions have been
long!established[ A complete and general treatment of this subject including detailed derivation of
each interrelationship normally requires an extensive development[ For a comprehensive treatment
of the subject\ the reader is referred to the thorough treatises by\ e[g[ Schwarzl and Struik "0856#\
Ferry "0879#\ and Tschoegl "0878#[

A numerical interconversion based on the integral relationship between the relaxation modulus
and creep compliance was made by Hopkins and Hamming "0846#\ who divided the range of the
relevant integral into a _nite number of subdomains and applied the trapezoid rule to carry out
the integration within each subdomain[ Kno} and Hopkins "0861# further improved this method
by assuming both the source and target functions to be piecewise linear and carrying out the
integration numerically[ Baumgaertel and Winter "0878# demonstrated an analytical conversion
from the relaxation modulus to the creep compliance using their interrelationship in the Laplace
transform plane and the Prony series representation of both the source and target functions[ Mead
"0883# presented a numerical interconversion method based on constrained linear regression with
regularization\ and illustrated the method through determination of the relaxation modulus from
a set of storage and loss modulus data[ The constraints he imposed include integral!moment
equalities that are based on a priori knowledge of certain rheological data and the inequalities that
the modulus and compliance spectra be positive ^ the regularization technique he used suppresses
the impact of the random error on the computed spectra by penalizing the curvature of the target
function[ Ramkumar et al[ "0886# proposed a regularization technique that uses the quadratic
programming which was originally developed for solving ill!posed Fredholm integral equations\
and demonstrated the e}ectiveness of the method by computing the relaxation spectrum from
vibratory experimental data[

Exact solutions may take the form of integrals over an in_nite range which are not easy to
evaluate either analytically or numerically[ Moreover\ in practice the experimental data are avail!
able only for a limited range of time or frequency[ Due to the computational di.culties associated
with exact analytical interconversion and due to the limitations of the available data\ practical
methods of approximate interconversion are warranted[ Most of the approximate analytical
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methods have a theoretical origin in the corresponding exact relationships[ Also\ many of these
methods involve taking _rst derivatives of the source function or related functions and\ in some
cases\ higher!order derivatives are also used "Schwarzl and Struik\ 0856#[ In determining deriva!
tives\ either a graphical method or a numerical _nite di}erence method are usually used[ The
accuracy and limitations of a method obviously depends on its theoretical basis and the assumptions
and simpli_cation that are involved[ A given method may work well for a modulus to compliance
conversion but not necessarily for the reverse conversion[ Some methods are valid only over a very
limited range of the independent variable[

Here\ in Part I\ we shall _rst illustrate a numerical method of interconversion between the
modulus and compliance functions when both the source "known# and the target "unknown#
transient functions are expressed in Prony "exponential# series[ It is shown that the target function
can be determined in a straightforward and e}ective way without the need for _nding roots in the
Laplace transform domain[ In fact\ determination of the target function will be shown to simply
reduce to solving a system of linear algebraic equations for unknown Prony series coe.cients[ We
should mention that computational e.ciency using Prony series is not limited to interconversion
of viscoelastic functions[ It is well!known that the e.ciency of numerical methods of structural
analysis\ using an incremental time!stepping procedure\ is signi_cantly aided using Prony series
representations of viscoelastic functions "e[g[\ Taylor et al[\ 0869#[ In Part II "Schapery and Park\
0887#\ a new approximate analytical interconversion method is developed using mathematical
properties of narrow!band weight functions and broad!band material functions[ Also in Part II
some available existing approximate methods are reviewed and their performances compared with
the new method[

In what follows\ the standard symbols of t and v for time and frequency\ respectively\ are used[
However\ when time!temperature superposition is applicable "Ferry\ 0879#\ these symbols may be
interpreted as temperature!reduced quantities[ Also\ the standard symbols of E and D for uniaxial
loading are used for modulus and compliance\ respectively\ which serve to relate uniaxial stress to
its work!conjugate strain[ One may interpret them more generally as quantities that relate any one
component of the stress tensor to a component of the strain tensor for isotropic and anisotropic
materials[

1[ Prony series representation of linear viscoelastic material functions

The uniaxial\ nonaging\ isothermal stressÐstrain equation for a linear viscoelastic material can
be represented by a Boltzmann superposition integral\

s"t# � g
t

9

E"t−t#
do"t#
dt

dt[ "0#

"The lower limit in this and all succeeding integrals over time should be interpreted as 9− whenever
the integrand contains the derivative of a step function at the origin\ such as when o is that for a
stress relaxation test[# Equation "0# is based on the mathematical properties governing all linear\
nonaging systems[ The stressÐstrain equation may be expressed in a di}erential operator form
based on a mechanical model consisting of linear springs and dashpots\
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dtm
[ "1#

Mechanical models with di}erent arrangement of springs and dashpots provide di}erent mech!
anical interpretations of the constants an and bm in "1#[

The generalized Maxwell model "or Wiechert model# consists of a spring and m Maxwell
elements connected in parallel[ The relaxation modulus derived from this model is given by

E"t# � Ee¦ s
m

i�0

Eie
−"t:ri# "2#

where Ee "the equilibrium modulus#\ Ei "relaxation strengths#\ and ri "relaxation times# are all
positive constants[ The series expression in "2# is often referred to as a Prony or Dirichlet series[
The creep compliance can be characterized more easily using the generalized Voigt model "or
Kelvin model# which consists of a spring and a dashpot and n Voigt elements connected in series\
and is given by

D"t# � D`¦
t
h9

¦ s
n

j�0

Dj"0−e−"t:t j## "3#

where D` "the glassy compliance#\ h9 "the zero!shear or long!time viscosity#\ Dj "retardation
strengths#\ and tj "retardation times# are positive constants[ It is to be noted that the constants in
the generalized Maxwell and generalized Voigt models can be chosen so that the models are
mathematically equivalent\ and thus a viscoelastic material depicted by one model also can be
depicted by the other[ It is also of interest that the thermodynamics of linear irreversible process
has been used by Biot "0843# to show that "2# and "3# are the most general representations possible
for the isothermal case and by Schapery "0853# for certain important nonisothermal cases such as
thermorheologically simple behavior ^ all elements of the modulus and compliance tensors have
this form for isotropic and anisotropic media[

The constants in "2# and "3# can be obtained by _tting these expressions to the available
experimental data[ Various methods of _tting have been proposed ^ e[g[\ the collocation method
was proposed by Schapery "0850# and the multidata method by Cost and Becker "0869#[ It should
be noted that h9 : � and Ee × 9 for viscoelastic solids ^ then "3# has the same form as "2# in which
"D`¦SDj# and −Dj are compared\ respectively\ with Ee and Ei when n � m[ Further\ in "2#\ the
constant Ee may be viewed as a term arising from one of the Maxwell units for which ri : �[ The
principal advantage of using the series representation "2# or "3# is the remarkable computational
e.ciency associated with these expressions[ For instance\ once a material function is de_ned in the
time domain by "2# or "3#\ the corresponding function in the frequency or Laplace!transform
domain can be readily obtained in terms of the constants involved in "2# and "3#[

From "0#\ the following integral relationship between the uniaxial relaxation modulus E"t# and
creep compliance D"t# is found ]

g
t

9

E"t−t#
dD"t#

dt
dt � 0 "t × 9#[ "4#
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For the sake of convenience in our analysis in this paper\ we shall de_ne the operational modulus
and the compliance as follows ]

E	"s# 0 sg
�

9

E"t# e−st dt "5#

D	 "s# 0 sg
�

9

D"t# e−st dt "6#

where the integrals in "5# and "6# are the Laplace transforms of E"t# and D"t#\ respectively ^ the s!
multiplied Laplace transform is often called Carson transform[ From "4#Ð"6#\ one can obtain the
following familiar relationship between the two operational functions ]

E	"s#D	 "s# � 0[ "7#

Complex material functions arise from the response to a steady!state sinusoidal loading\ and
are related to the operational functions as follows "e[g[\ Tschoegl\ 0878# ]

E�"v# � E	"s# =s:iv "8#

D�"v# � D	 "s# =s:iv[ "09#

The real and imaginary parts\ denoted with primes and double primes\ are

E�"v# 0 E?"v#¦iEý"v# "00#

D�"v# 0 D?"v#−iDý"v#[ "01#

Note that the minus sign is used in "01# so that Dý will be positive[ The real and imaginary parts
are commonly called the storage and loss functions\ respectively[ The following relationship
between the complex functions comes from "7#Ð"09# ]

E�"v#D�"v# � 0[ "02#

The operational and the components of complex material functions\ based on "5#Ð"01# and the
Prony series representations "2# and "3#\ are given\ respectively\ by

E	"s# � Ee¦ s
m

i�0

sriEi

sri¦0
"03#

D	 "s# � D`¦
0

h9s
¦ s

n

j�0

Dj

stj¦0
"04#

E?"v# � Ee¦ s
m

i�0

v1r1
i Ei

v1r1
i ¦0

"05#

Eý"v# � s
m

i�0

vriEi

v1r1
i ¦0

"06#
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D?"v# � D`¦ s
n

j�0

Dj

v1t1
j ¦0

"07#

Dý"v# �
0

h9v
¦ s

n

j�0

vtjDj

v1t1
j ¦0

[ "08#

2[ A numerical interconversion when material functions are represented by Prony series

Let us now illustrate a method of numerical interconversion between the modulus and com!
pliance functions in time\ Laplace!transform\ and frequency domains when the transient material
functions involved are represented by Prony series[ In the theory and examples that follow\ we
shall consider a viscoelastic solid with Ee × 9 and h9 : �[ However\ the theory is equally valid for
viscoelastic liquids "for which Ee � 9 and h9 is _nite# and the pertinent equations are in Appendix
A[

2[0[ Use of relationship between transient functions

Integral eqn "4# can be used to determine the relaxation modulus from a known creep compliance
or vice versa ^ except for very special cases\ this must be done by approximate analytical or
numerical methods[ A common numerical approach normally requires that the integral be decom!
posed into a great number of intervals because of the spread of the function over many decades of
time ^ this may render inaccurate results and cause computational di.culties unless one is very
careful in the choice of the intervals[ However\ by substituting the series representations "2# and
"3# into "4#\ one may readily carry out the integration analytically\ as detailed in Appendix A\ and
then easily derive the target function[

When one set of constants\ either "ri\ Ei "i � 0\ [ [ [ \ m# and Ee# or "tj\ Dj " j � 0\ [ [ [ \ n#\ D` and
h9#\ is known and the target time constants are speci_ed\ the other "unknown# set of constants can
be determined simply by solving the resulting system of linear algebraic equations[ For instance\
if one seeks to _nd D"t# from known E"t#\ the following system of equations for unknown constants
Dj " j � 0\ [ [ [ \ n# results ]

ðAŁ"D# � "B# "19#

or AkjDj � Bk "summed on j ^ j � 0\ [ [ [ \ n ^ k � 0\ [ [ [ \ p# where

Akj �

F

G

G

g

G

G

f

Ee"0−e−"tk:t j##¦ s
m

i�0

riEi

ri−tj

"e−"tk:ri#−e−"tk:t j## when ri � tj

or

Ee"0−e−"tk:t j##¦ s
m

i�0

tkEi

tj

"e−"tk:ri# when ri � tj\

"10#

and
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Bk � 0−0Ee¦ s
m

i�0

Ei e
−"tk:ri#1> 0Ee¦ s

m

i�0

Ei1[ "11#

The symbol tk "k � 0\ [ [ [ \ p# denotes a discrete time corresponding to the upper limit of integration
in "4#[

In eqn "19#\ Ee\ Ei and ri "i � 0\ [ [ [ \ m# together with tj " j � 0\ [ [ [ \ n# and tk "k � 0\ [ [ [ \ p# are
known or speci_ed\ and Dj " j � 0\ [ [ [ \ n# are the unknowns[ For the system of linear algebraic
eqns "19#\ the collocation method is e}ected when p � n "in which "4# is satis_ed exactly at times
tk#\ and the least squares method may be used when p × n "i[e[\ when the number of available
equations in "19# is greater than the number of unknowns#[ In the case of the least squares method\
a minimization of the square error >"B#−ðAŁ"D#>1 with respect to Dj " j � 0\ [ [ [ \ n# leads to the
replacement of "19# with ðAŁTðAŁ"D# � ðAŁT"B# in which the product ðAŁTðAŁ is a square matrix[

The time constants tj " j � 0\ [ [ [ \ n# are usually speci_ed appropriately "e[g[\ Schapery\ 0850#
rather than being calculated by solving a nonlinear system of equations with 1n unknowns[
Selection of the sampling points tk "k � 0\ [ [ [ \ p# depends on the method of solution[ For the
collocation method "where p � n#\ tk may conveniently be taken to be tk � atk "k � 0\ [ [ [ \ n# where
typically a � 0 or a � 0:1 is used[ For the least!squares method\ one may take tk "k � 0\ [ [ [ \ p#
with equidistant intervals "on the log t axis# which are smaller than the intervals of tj " j � 0\ [ [ [ \ n#\
so that p × n[ Selection of tk and tj is illustrated in the examples given below[ The glassy compliance
D` can be obtained from "A4# in Appendix A which is based on the initial and _nal theorems of
the Laplace transform[

Once the model constants D`\ Dj and tj " j � 0\ [ [ [ \ n# are known\ functions D"t#\ D	 "s#\ D?"v#
and Dý"v# can be readily determined from "3#\ "04#\ "07# and "08#\ respectively[ A similar set of
equations may be formulated for unknown constants Ei "i � 0\ [ [ [ \ m# when one seeks to _nd the
modulus function from a known compliance function[

2[1[ Use of relationship between operational functions

The relation "7# between the operational modulus and compliance functions is very useful in
directly evaluating one function when the other is known at a particular value of the argument[
However\ if both the source and the target functions are represented in Prony series\ the complete
target function can be determined by solving a system of linear algebraic equations using collocation
of "7# or a least squares method[ For instance\ if one seeks to _nd D	 "s# from known E	"s#\ the same
form of equation as that of "19# is obtained\ but with the following de_nitions of Akj and Bk\

Akj � 0Ee¦ s
m

i�0

Ei

sk

sk¦0:ri1 0
0

sktj¦01 "12#

and

Bk � 0−0Ee¦ s
m

i�0

Ei

sk

sk¦0:ri1> 0Ee¦ s
m

i�0

Ei1[ "13#

Equations "19#\ with "12# and "13#\ were obtained by substituting "03# and "04# with h9 : � into
"7# and rearranging terms[ The symbol sk "k � 0\ [ [ [ \ p# denotes a discrete value of the transform



S[W[ Park\ R[A[ Schapery:International Journal of Solids and Structures 25 "0888# 0542Ð05640559

variable at which the interrelationship "7# is satis_ed\ and its selection is analogous to that of tk
discussed earlier except that sk � 0:tk[ The glassy compliance D` is represented in terms of Ee and
Ei "i � 0\ [ [ [ \ m# according to "A4#[ Again\ the number of sampling points "or number of equations#
should not be less than the number of the unknowns "i[e[\ p − n#[ Tschoegl "0878# gave a brief
discussion on this approach[

2[2[ Use of relationship between complex functions

Using the relationship "02# between the complex modulus and compliance functions together
with the de_nitions "00# and "01#\ one may readily obtain interrelationships between the com!
ponents "real or imaginary# of the complex modulus and compliance functions[ It is seen\ from
"05#Ð"08#\ that if the Prony series coe.cients for either the real or the imaginary component of a
complex function are known\ the series representation of the other component is automatically
known[ Therefore\ again\ if both the source and the target functions are representable in Prony
series\ one can determine the target function by solving a system of linear algebraic equations in
terms of the model constants of the source function[

For instance\ if one seeks to _nd D? from E? and Eý\ the following relationship\ derived from
"00#Ð"02#\ can be used ]

D? �
E?

"E?#1¦"Eý#1
[ "14#

Once D? is determined\ Dý is readily established in terms of the same set of constants[ Now
substituting "05#Ð"07# into "14#\ one may obtain the same form of equation as "19# with the
following Akj and Bk ]

Akj �
0

v1
kt

1
j ¦0

"15#

and

Bk �

Ee¦ s
m

i�0

v1
kr

1
i Ei

v1
kr

1
i ¦0

0Ee¦ s
m

i�0

v1
kr

1
i Ei

v1
kr

1
i ¦01

1

¦0s
m

i�0

vkriEi

v1
kr

1
i ¦01

1
−

0

Ee¦ s
m

i�0

Ei

[ "16#

The symbol vk "k � 0\ [ [ [ \ p# denotes a discrete value of the angular frequency at which the
interrelationship "14# is established and can be selected in the same manner as that of sk discussed
above[ Again\ the glassy compliance D` can be computed from Ee and Ei "i � 0\ [ [ [ \ m# according
to "A4#[

3[ Numerical examples

3[0[ Conversion of E"t# into E	"s#\ E?"v#\ Eý"v#\ D"t#\ D	"s#\ D?"v#\ and Dý"v#

Consider the problem of converting a relaxation modulus E"t# into the operational and complex
moduli and all forms of compliance functions considered[ We shall use\ as the source function\
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Table 0
Prony series constants for the modulus functions
of PMMA " from Schapery\ 0850#

ri Ei

i "sec# "dynes:cm1#a

0 1E−91 0[83E¦98
1 1E−90 1[72E¦98
2 1E¦99 4[43E¦98
3 1E¦90 5[91E¦98
4 1E¦91 2[77E¦98
5 1E¦92 0[45E¦98
6 1E¦93 3[09E¦97
7 1E¦94 0[27E¦97
8 1E¦95 2[57E¦96

09 1E¦96 6[89E¦95
00 1E¦97 8[59E¦95

Ee � 1[13E¦96

a 0 dyne:cm1 � 09−0 N:m1[

the tensile relaxation modulus E"t# of polymethyl methacrylate "PMMA# whose Prony series
representation was given by Schapery "0850#[ The Prony constants Ee\ Ei and ri "i � 0\ [ [ [ \ m# are
given in Table 0 and the graphical representation of E"t# is shown in Fig[ 0 ^ the equilibrium
modulus Ee is that of the entanglement plateau "Ferry\ 0879# for this non!crosslinked polymer[ As
the Prony constants are known\ the operational and the components of complex moduli\ E	\ E?
and Eý\ are obtained immediately from "03#\ "05#\ and "06#\ and are graphically represented in
Fig[ 1[ Next\ the Prony constants Dj " j � 0\ [ [ [ \ n# for compliance are obtained by solving the
system of eqns "19# with the matrix A and vector B given by "10#Ð"11# or "12#Ð"13# or "15#Ð"16#[
For comparison purposes\ all three alternatives were tried and both the collocation and least
squares methods were employed separately in solving the equations[ The sampling points were
selected at tk � 0:sk � 0:vk � 1×09"k−2# "k � 0\ [ [ [ \ 00# for the collocation and
tk � 0:sk � 0:vk � 09ð"k−0#:1Ł−3 "k � 0\ [ [ [ \ 16# for the least!squares method[

When retardation times tj are determined by a root!_nding method using the exact inter!
relationship between E	"s# and D	 "s#\ as outlined in Appendix B\ any one of the three sets of eqns
"10#Ð"16# will give "essentially# an exact interconversion ^ there is a slight error due to the numerical
error in predicting the roots[ The resulting compliance constants together with retardation times
are tabulated in Table 1[ The constant D` was obtained according to "A4#[ Because the error in
the predicted retardation times is very small\ there are negligible di}erences among the sets of
evaluated coe.cients Dj " j � 0\ [ [ [ \ 00# obtained from di}erent alternative equations[ Also\ as
expected\ no practical di}erence was found between solutions from the collocation and least
squares method[ The resulting creep compliance D"t# is given in Fig[ 0\ and the functions D	 "s#\
D?"v# and Dý"v# are in Fig[ 2[

To assess the error involved in each of the methods\ the left hand side "LHS# of each of the eqns
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Fig[ 0[ The source relaxation modulus "from Schapery\ 0850# and the computed creep compliance for PMMA[

"4#\ "7# and "02# was evaluated using the source and the now available target functions[ Recall
that the convolution integral in "4# can be carried out analytically when both functions involved
are represented in a Prony series[ Also note that the relationship "02# implies =E�= =D�= � 0 where
=== denotes the amplitude of a complex function ^ this form was used in the example[ Since the
required right hand side of each equation is unity\ the achieved LHS values\ when subtracted by
unity\ conveniently gives a normalized measure of error[ The resulting maximum errors "LHS!0#
are presented in Table 2\ and are seen to be very small[ The LHS values were evaluated for the
entire domain of its respective independent variable "i[e[\ t × 9\ s × 9\ or v × 9#[

High accuracy of the target function is to be expected when the retardation times are found by
the method presented in Appendix B[ However\ good accuracy is found even when other values
of target time constants are selected[ In order to illustrate this insensitivity to tj\ and to provide a
practical rule!of!thumb for specifying target time constants "retardation times in the present case#
without added complexity\ we used tj � rj " j � 0\ [ [ [ \ m ^ m � n#\ and the results are found to be
quite accurate[ The maximum error from each of the three equations is within 3) as indicated in
Table 2[ Also presented in Table 2 are the maximum relative errors in the D"t# prediction between
the two schemes discussed\ i[e[\ using tj � rj and using tj predicted by the method in Appendix B[
These results are consistent with our past experience in _tting Prony series to broad!band functions
using assumed values of target time constants that span the time range of the data and are
su.ciently dense "one decade or one!half decade spacing\ depending on the material#[

It should be noted that if the spacing of tj is more than one decade\ a staircase!type representation
results and the method will produce signi_cant error in a broad!band function even if many terms
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Fig[ 1[ Complex and operational modulus functions for PMMA[

Table 1
Prony series constants computed for the compliance functions of PMMA

Based on "4# Based on "7# Based on "02#

tj Dj Dj Dj

j "sec# "cm1:dynes# "cm1:dyne# "cm1:dyne#

0 1[08E−91 3[97E−01 3[97E−01 3[97E−01
1 1[23E−90 6[26E−01 6[25E−01 6[28E−01
2 1[77E¦99 1[14E−00 1[13E−00 1[14E−00
3 2[79E¦90 5[39E−00 5[30E−00 5[28E−00
4 4[14E¦91 1[92E−09 1[91E−09 1[92E−09
5 5[50E¦92 5[75E−09 5[77E−09 5[75E−09
6 5[92E¦93 1[08E−98 1[08E−98 1[08E−98
7 4[78E¦94 5[49E−98 5[37E−98 5[40E−98
8 3[16E¦95 0[26E−97 0[27E−97 0[25E−97

09 1[46E¦96 5[82E−98 5[65E−98 6[94E−98
00 1[84E¦97 0[34E−97 0[36E−97 0[33E−97

D` � 3[36E−00 for all cases
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Fig[ 2[ Complex and operational compliance functions for PMMA[

Table 2
Errors involved in interconversion between the modulus and compliance functions of PMMA

Using solution Using solution Using solution
from "4# from "7# from "02#
")# ")# ")#

Maximum error in "4# With predicted tj 9[38 9[58 9[35
With tj � rj 1[6 0[6 1[3

Maximum error in "7# With predicted tj 9[43 9[62 9[30
With tj � rj 1[8 9[8 2[9

Maximum error in "02# With predicted tj 9[41 9[66 9[27
With tj � rj 2[7 1[0 1[8

Maximum in

1[5 0[8 1[7
=D"t#with tj�rj

−D"t#with predicted tj
=

D"t#with predicted tj
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Fig[ 3[ One!term Prony series representations of E"t# and D"t#[

are used[ Figure 3 shows the behavior of a typical\ one!term Prony series representation of E"t#
and D"t#[ Each term in a multi!term series exhibits this behavior\ leading to staircase behavior
when the time constants are separated by more than a decade[ Similar behavior exists for each
term in other material functions "03#Ð"08#[ Most viscoelastic solids or liquids require several such
terms "with di}erent time constants# in their Prony series representations\ as may be seen by the
several decades in time or frequency over which the material functions vary[ Thus\ if assumed
target time constants are used\ such as tj � rj\ the present method is not expected to yield accurate
results for the unusual case of materials which require only one or a few exponential terms in their
Prony series representations[

3[1[ Conversion of J?"v# to J"t#\ J	"s#\ Jý"v#\ G"t#\ G	"s#\ G?"v#\ and Gý"v#

Consider now the problem of converting a storage function into other functions[ We shall use\
as the source function\ the shear storage compliance J?"v# of polyisobutylene whose Prony series
representation was given by Schapery "0850#[ The Prony constants J`\ Jj and tj " j � 0\ [ [ [ \ n# are
given in Table 3 and the graphical representation of J?"v# is shown in Fig[ 4[ As the Prony constants
are known\ the operational\ loss\ and compliance functions\ J	"s#\ Jý"v#\ and J"t#\ are determined
immediately from "04#\ "08#\ and "3#\ with D|s replaced with J|s[ The resulting functions are
graphically represented in Figs 4 and 5[ Next\ the Prony constants Gi "i � 0\ [ [ [ \ m# for relaxation
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Table 3
Prony series constants for the shear com!
pliance functions of polyisobutylene " from
Schapery\ 0850#

tj Jj

j "sec# "cm1:dynes#

0 0E¦90 2[46E−98
1 0E¦99 4[22E−98
2 0E−90 2[85E−97
3 0E−91 2[47E−97
4 0E−92 0[10E−97
5 0E−93 1[49E−98
6 0E−94 7[97E−09
7 0E−95 1[11E−09
8 0E−96 3[99E−00

09 0E−97 1[11E−00
J` � 2[05E−00

Fig[ 4[ The source shear storage compliance "from Schapery\ 0850# and the associated loss and operational compliance
for polyisobutylene[
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Fig[ 5[ Shear relaxation modulus and creep compliance for polyisobutylene[

functions were obtained by solving the system of equations similar to "19# with the unknown
vector D replaced by G[ The matrix A and vector B can be obtained in a similar manner to those
of the foregoing case of PMMA[ The resulting modulus constants as well as relaxation times
"determined by the method discussed in Appendix B# are given in Table 4[ In each case\
tk � 0:sk � 0:vk � 09"1−k# "k � 0\ [ [ [ \ 09# were used[ The constant Ge was obtained in a manner
similar to that for D` ^ exercising the initial and _nal value theorems of the Laplace transform\ one
may obtain a relationship\ Ge � 0:"J`¦SJj#[ As in the previous example\ using the predicted
target time constants\ there are negligible di}erences among the sets of evaluated coe.cients Gi

"i � 0\ [ [ [ \ 09# from di}erent alternative equations[ The resulting shear relaxation modulus G"t# is
shown in Fig[ 5\ and the functions G	"s#\ G?"v# and Gý"v# in Fig[ 6[ Errors involved were assessed
in the similar manner described earlier and are given in Table 5[ Overall\ the magnitude and nature
of errors are quite close to those for PMMA presented in Table 2[ The simple rule!of!thumb
speci_cation of relaxation times\ ri � ti "i � 0\ [ [ [ \ n ^ n � m#\ was also used and the results are
good ^ the maximum relative error in G"t# is 2[4) as shown in Table 5[

4[ Concluding remarks

A simple numerical interconversion method based on Prony exponential series representation
of source and target transient functions is presented and shown to be very e}ective and accurate[
Each of the three relationships between the modulus and compliance functions\ in time\ Laplace
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Fig[ 6[ Complex and operational shear modulus for polyisobutylene[

Table 4
Prony series constants computed for the shear modulus functions of polyisobutylene

Based on "4#a Based on "7#a Based on "02#a

ri Gi Gi Gi

i "sec# "dynes:cm1# "dynes:cm1# "dynes:cm1#

0 8[66E¦99 2[46E¦94 2[47E¦94 2[59E¦94
1 8[44E−90 4[43E¦94 4[38E¦94 4[37E¦94
2 5[92E−91 5[27E¦95 5[30E¦95 5[31E¦95
3 2[44E−92 1[51E¦96 1[50E¦96 1[59E¦96
4 1[52E−93 0[94E¦97 0[94E¦97 0[94E¦97
5 2[91E−94 2[79E¦97 2[67E¦97 2[66E¦97
6 1[77E−95 0[29E¦98 0[20E¦98 0[20E¦98
7 1[64E−96 4[32E¦98 4[25E¦98 4[26E¦98
8 4[02E−97 7[73E¦98 8[93E¦98 8[93E¦98

09 4[51E−98 0[46E¦09 0[43E¦09 0[41E¦09
Ge � 0[99E¦96 for all cases

a With E and D replaced with G and J\ respectively[
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Table 5
Errors involved in interconversion between the shear compliance and modulus functions of polyisobutylene

Using solution Using solution Using solution
from "4# from "7# from "02#
")# ")# ")#

Maximum error in "4# With predicted ri 9[50 9[02 9[34
With ri � ti 2[5 1[5 2[6

Maximum error in "7# With predicted ri 9[48 9[04 9[37
With ri � ti 2[1 0[7 3[2

Maximum error in "02# With predicted ri 9[51 9[10 9[41
With ri � ti 3[4 2[9 2[8

Maximum in

2[4 1[5 2[2
=G"t#with ri�ti

−G"t#with predicted ri
=

G"t#with predicted ri

transform\ and frequency domains\ is shown to yield essentially the same results[ The results are
found to be quite insensitive to the choice of speci_c relaxation and retardation times as long as
they span the time range of the data and are su.ciently dense "typically one!decade apart or
closer#[ The use of the same values for the relaxation and retardation times yielded quite accurate
results[

The method is based on a Prony series representation of the transient material functions[ This
and related representations of a source function can be achieved using various available _tting
methods "e[g[\ the collocation method by Schapery\ 0850\ the multidata method by Cost and
Becker\ 0869#[ The source series representations for the example materials used in this paper were
obtained through the use of the collocation method by Schapery "0850# and all the coe.cients
involved are positive[ However\ this is not always the case with the collocation or multidata _tting
methods\ and often negative coe.cients\ especially associated with time constants in the "glassy
and rubbery# plateau zones\ occur[ Having negative coe.cients is not physically realistic "when
the stress and strain are work!conjugates# and sometimes causes undesirable oscillations in the
reconstructed curve of the material function[ A number of researchers have proposed di}erent
approaches to overcome the problem of negative coe.cients[ Emri and Tschoegl "0882\ 0883\
0884# and Tschoegl and Emri "0881\ 0882# developed a recursive computer algorithm to avoid
negative coe.cients by using only well!de_ned subsets of the experimental data[ Kashhta and
Schwarzl "0883a\ 0883b# proposed a method that ensures positive coe.cients through an interactive
adjustment of relaxation or retardation times\ and Baumgaertel and Winter "0878# employed a
nonlinear regression in which the spectra\ time constants\ and the number of terms in the series
are all variable[ Mead "0883# used a constrained linear regression with regularization[ Others
applied the so!called Tikhonov regularization techniques "Honerkamp and Weese\ 0878 ^ Elster et
al[\ 0880# or the maximum entropy method "Elster and Honerkamp\ 0880#[ Park and Kim "0887#
recently proposed a method of pre!smoothing the experimental responses using a power!law
series representation\ which allows the quality of a subsequent Prony series representation to be
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substantially enhanced[ We have found if the time constants are no closer than one!half decade
the e}ect of negative coe.cients\ if any\ is small ^ a small adjustment of the location or range of
time constants often eliminates or reduces the magnitude of negative coe.cients[ Bradshaw and
Brinson "0886#\ in a paper that appeared after the present one was accepted for publication\
describe a method of interconversion that is similar to what is used here ^ their procedure is based
on an integral relationship between E"t# and D"t# equivalent to "4# and employs a least squares
method "using a relative measure of error# and a constraint that assures non!negative coe.cients[

Finally\ it should be mentioned that the interconversion methods developed for linear viscoelastic
behavior are applicable in modeling important classes of nonlinear viscoelastic materials because
the linear viscoelastic functions enter directly in the nonlinear models without damage growth
"e[g[\ Schapery\ 0886# and with damage growth "e[g[\ Park and Schapery\ 0886#[ Moreover\ the
idea of time!temperature superposition\ which was originally established for linear viscoelastic
materials\ may work well for some nonlinear viscoelastic materials "e[g[\ Ferry\ 0879 and the
particle!_lled rubber with growing damage studied by Park and Schapery\ 0886#\ thus widening
the range of applications for which the linear interconversion methods apply[

Appendix A ] Reduction of eqn "4# when E"t# and D"t# are represented by Prony series

"a# For viscoelastic solids "Ee × 9 and h9 : �#

Substituting "2# and "3# into "4#\

g
t

9 0Ee¦ s
m

i�0

Eie
−ð"t−t#:riŁ1 0D`d"t#¦ s

n

j�0

Dj

tj

e−"t:t j#1 dt � 0 "A0#

or

D` 0Ee¦ s
m

i�0

Eie
−"t:ri#1¦Ee s

n

j�0

Dj

tj g
t

9

e−"t:t j# dt¦ s
m

i�0

s
n

j�0

EiDj

tj

e−"t:ri# g
t

9

e−ð"t:t j#−"t:ri#Ł dt � 0[

"A1#

where d" # in "A0# denotes the Dirac delta function[ The integrals in "A1# are readily evaluated as
follows ]

g
t

9

e−"t:t j# dt � tj"0−e−"t:t j##

and

g
t

9

e−ð"t:t j#−"t:ri#Ł dt � 8
ritj

ri−tj

"0−e−ð"t:t j#−"t:ri#Ł# when ri � tj

t when ri � tj

[
"A2#

Substituting "A2# into "A1# and rearranging\ one obtains
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s
n

j�0 $s
m

i�0

riEi

ri−tj

"e−"t:ri#−e−"t:t j##¦Ee"0−e−"t:t j##%Dj � 0−D` 0Ee¦ s
m

i�0

Ei e
−"t:ri#1when ri � tj

"A3#

and

s
n

j�0 $s
m

i�0

tEi

tj

e−"t:ri#¦Ee"0−e−"t:t j##%Dj � 0−D` 0Ee¦ s
m

i�0

Ei e
−"t:ri#1when ri � tj[

In matrix form\ "A3# reduces to "19# in which Dj " j � 0\ [ [ [ \ n# are unknown[ It is to be noted that
D` in "A3# may be expressed in terms of Ee and Ei "i � 0\ [ [ [ \ m# through the following relationships
that are based on the initial!value and _nal!value theorems of the Laplace transform "Churchill\
0847# ]

D` 0 lim
t:9

D"t# � lim
s:�

D	 "s# �
0

lim
s:�

E	"s#
�

0
lim
t:9

E"t#
�

0

Ee¦ s
m

i�0

Ei

[ "A4#

A similar derivation may be carried out for the case when D"t# is known and E"t# is the unknown
target function[ The constant Ee\ in this case\ may be expressed in terms of D` and Dj " j � 0\ [ [ [ \ n#
as follows ]

Ee 0 lim
t:9

E"t# � lim
s:�

E	"s# �
0

lim
s:�

D	 "s#
�

0
lim
t:9

D"t#
�

0

D`¦ s
n

j�0

Dj

[ "A5#

"b# For viscoelastic liquids "Ee � 9 and h9 is _nite#

Substituting "2# and "3# into "4#\

g
t

9 0s
m

i�0

Ei e
−ð"t−t#:riŁ1 0D`d"t#¦

0
h9

¦ s
n

j�0

Dj

tj

e−"t:t j#1 dt � 0 "A6#

or

D` s
m

i�0

Ei e
−"t:ri#¦

0
h9

s
m

i�0

Ei g
t

9

e−ð"t−t#:riŁ dt¦ s
m

i�0

s
n

j�0

EiDj

tj

e−"t:ri#g
t

9

e−ð"t:t j#−"t:ri#Ł dt � 0[ "A7#

The integrals in "A7# are readily evaluated as follows ]

g
t

9

e−ð"t−t#:riŁ dt � ri"0−e−"t:ri## "A8#

and
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g
t

9

e−ð"t:t j#−"t:ri#Ł dt � 8
ritj

ri−tj

"0−e−ð"t:t j#−"t:ri#Ł# when ri � tj

t when ri � tj

[

Substituting "A8# into "A7# and rearranging\ one obtains

s
n

j�0 $s
m

i�0

riEi

ri−tj

"e−"t:ri#−e−"t:t j##%Dj � 0−D` s
m

i�0

Ei e
−"t:ri#−

0
h9

s
m

i�0

riEi"0−e−"t:ri## when ri � tj

"A09#

and

s
n

j�0 $s
m

i�0

tEi

tj

e−"t:ri#%Dj � 0−D` s
m

i�0

Ei e
−"t:ri#−

0
h9

s
m

i�0

riEi"0−e−"t:ri## when ri � tj[

Equation "A4# for D` reduces\ for viscoelastic liquids\ to

D` �
0

s
m

i�0

Ei

[ "A00#

Also\ from "04#\ one _nds

0
h9

� lim
s:9

sD	[ "A01#

Now\ from "7# and "03# together with "A01#\ the constant h9 in "A09# may be expressed in terms
of Ei "i � 0\ [ [ [ \ m# as follows ]

h9 � s
m

i�0

riEi[ "A02#

A similar derivation may be carried out for the case when D"t# is known and E"t# is the unknown
target function[ In this case\ Ee � 9 and the constants ri and Ei are constrained in terms of given
h9 by "A02#[

Appendix B ] Determination of time constants for a target function

The time constants involved in the Prony series representation of the target function can be
determined using the interrelationship between the source and target functions[ For instance\ from
"03#\

lim
s:−"0:ri#

E	"s# � 2� "i � 0\ [ [ [ \ m#[ "B0#

Similarly\ from "04#\
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Fig[ B0[ =E	"s# = vs "−0:s# for PMMA[

lim
s:−"0:t j#

D	 "s# � 2� " j � 0\ [ [ [ \ n#[ "B1#

Now\ from "7# and "B1#\

lim
s:−"0:t j#

E	"s# � 9 " j � 0\ [ [ [ \ n#[ "B2#

"B2# indicates that\ for given ri and Ei "i � 0\ [ [ [ \ m#\ unknown tj " j � 0\ [ [ [ \ n# can be determined
by taking the negative reciprocal of the solutions of equation E	"s# � 9 "s ³ 9#[ The solution may
be expedited with a graphical representation of the source function[ Figure B0 shows\ on logÐlog
scales\ the variation of =E	"s# = vs −0:s "s ³ 9# for PMMA using uniform abscissa intervals of 9[90
decade ^ the symbol === denotes an absolute value[ As E	"s# takes on negative values for some s|s
and therefore cannot be plotted on a logarithmic axis\ its absolute value was employed[ The
abscissa corresponding to each maximum approximates the known relaxation time\ ri\ and the
abscissa corresponding to each minimum approximates the retardation time\ tj[ "Of course\ more
accurate values of the target time constants could be found using a more elaborate root!_nding
method\ or using smaller intervals in the transform parameter s[# The retardation times determined
using the 9[90 decade intervals are given in Table 1[ It is to be noted that the relaxation and
retardation times for viscoelastic solids are interlaced with each other in the following manner ]

r0 ³ t0 ³ r1 = = = ³ rN−0 ³ tN−0 ³ rN ³ tN\ "B3#
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which is a well!known result "Tschoegl\ 0878#[ For viscoelastic liquids\ tN : �[ A similar approach
may be used to determine the relaxation times when the retardation times and strengths are known[
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